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Resum

En els darrers anys, la criptografia amb corbes el.líptiques ha
adquirit una importància creixent, fins a arribar a formar part en
la actualitat de diferents estàndards industrials. Tot i que s’han
dissenyat variants amb corbes el.líptiques de criptosistemes
clàssics, com el RSA, el seu màxim interès rau en la seva
aplicació en criptosistemes basats en el Problema del Loga-
ritme Discret, com els de tipus ElGamal. En aquest cas, els
criptosistemes el.líptics garanteixen la mateixa seguretat que els
construïts sobre el grup multiplicatiu d’un cos finit primer, però
amb longituds de clau molt menor.

Mostrarem, doncs, les bones propietats d’aquests cripto-
sistemes, així com els requeriments bàsics per a que una corba
sigui criptogràficament útil, estretament relacionat amb la seva
cardinalitat. Revisarem alguns mètodes que permetin descartar
corbes no criptogràficament útils, així com altres que perme-
tin obtenir corbes bones a partir d’una de donada. Finalment,
descriurem algunes aplicacions, com són el seu ús en Targes
Intel.ligents i sistemes RFID, per concloure amb alguns avenços
recents en aquest camp.

Abstract

The relevance of elliptic curve cryptography has grown in re-
cent years, and today represents a cornerstone in many in-
dustrial standards. Although elliptic curve variants of classical
cryptosystems such as RSA exist, the full potential of elliptic
curve cryptography is displayed in cryptosystems based on the
Discrete Logarithm Problem, such as ElGamal. For these, elliptic
curve cryptosystems guarantee the same security levels as their
finite field analogues, with the additional advantage of using
significantly smaller key sizes.

In this report we show the positive properties of elliptic curve
cryptosystems, and the requirements a curve must meet to be
useful in this context, closely related to the number of points.
We survey methods to discard cryptographically uninteresting
curves as well as methods to obtain other useful curves from
a given one. We then describe some real world applications
such as Smart Cards and RFID systems and conclude with a
snapshot of recent developments in the field.

Paraules clau: corbes el.líptiques, criptosistemes, al-
goritmes criptogràfics

Keywords: elliptic curve, cryptosystems, crypto-
graphic algorithms

1 Introduction

The extended use of computer networks for information trans-
mission and management, as well as the fact that the number
of IT-users is increasing day by day, requires the role of security
mechanisms to guarantee privacy, integrity or authentication
of information. Such needs have been covered using several
cryptographic protocols, which often combine symmetric and
asymmetric cryptosystems.

One of the major disadvantages of symmetric cryptosys-
tems lies in the key agreement procedure, since users who want
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to communicate confidentially in the future need to agree on a
common secret key using a secure communication channel (in
practice, this means they have to meet face to face). Obviously,
this is an insurmountable drawback in our digital global era. To
overcome this obstacle, Diffie and Hellman [17] suggested in
1976 a secure key agreement protocol that can be performed
over insecure communication channels. This proposal is con-
sidered the first step towards public key cryptography, where
secretly shared information between parties is no longer needed
to be confidentially provided. The security of these cryptosys-
tems lies in the hardness of some underlying mathematical
problem which is believed to be computationally difficult. Hence,
attackers are prevented from obtaining the secret keys from the
public ones.

There are two widely used public key cryptosystems. The
first is RSA, proposed by Rivest, Shamir and Adleman [67], and
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is related to the intractability of the integer factorization problem,
namely the inversion of Euler’s Totient function. The second is
ElGamal cryptosystem [19], whose security lies in the difficulty
of the discrete logarithm problem over the multiplicative group
of a finite field. In view of the late improvements on factorization
algorithms (Lenstra’s elliptic curve algorithm and the number
field sieve for example) and on those algorithms aimed to solve
the discrete logarithm problem (specially Index-Calculus meth-
ods), the need for an enlargement in length of the keys is a
sensible issue for guaranteeing security.

In this situation, the use of elliptic curves in the design of
cryptosystems is a good alternative, since they provide both a
reduction in the key lengths while maintaining the same security,
and a wider range of choice for the system’s parameters (while
a change of curve does not necessarily mean a change in the
basic arithmetic). Technological industry is already implementing
these systems in the development of smart card authentication
and telecommunication protocols.

This report provides an overview of the techniques involved
in elliptic curve cryptography (ECC), focusing on the needs and
problems to be taken into account. We first introduce the notion
of an elliptic curve, and we emphasize elliptic curves over finite
fields. Then we review some elliptic curve crytosystems and
digital signature protocols, such as ECDSA. We then refer to
the problem of generating cryptographically good elliptic curves,
which is related to the problem of computing their cardinality.
The next section is devoted to the usage of ECC in restricted
environments such as smart cards and RFID systems. Likewise,
some recent research on the cooperative relationship between
cryptography and algebraic curves is highlighted. Finally, in the
last part of our report we overview some applications such
as primality test and factorization algorithms and sketch some
topics of current research.

2 Elliptic curves

An elliptic curve over a field K is an algebraic curve with no
singular points, given by an equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ K,

called general Weierstrass equation (see [73]).
Whenever the field characteristic is different from 2 or 3, this

equation can be transformed into the reduced Weierstrass form

y2 = x3 + ax + b, a, b ∈ K, (1)

with nonzero discriminant 4a3 + 27b2 6= 0 to avoid singularities.
Then, given an elliptic curve E/K over a field K, we denote

by E(K) the set of points P = (x, y) ∈ K×K which satisfy the
curve equation, along with the infinity point O.

2.1 Group law
An addition operation is defined over E/K using the chord-
tangent method (see Figure 1). It consists of considering the
line through two points P and Q (or the tangent line, in case we
want to double P ). The intersection point of such a line with the
elliptic curve is a rational point R. Then the addition point P +Q

is obtained taking the symmetric point of R with respect to the
x-axis. This operation, called elliptic addition, endows the set
E(K) with an abelian group structure, where O is the identity
element.

Analytically, given a curve with equation (1), the coordinates
of P + Q = (x3, y3), when P + Q 6= O, are obtained in terms
of the coordinates of P = (x1, y1) and Q = (x2, y2) as follows

x3 = λ2 − x1 − x2, y3 = (x1 − x3)λ− y1, (2)

where λ = (y1−y2)/(x1−x2) if x1 6= x2, and λ = (3x2
1+a)/2y1

when x1 = x2 and y1 6= 0. The symmetric point of P = (x, y)

is −P = (x,−y).
Considering this group law, the scalar multiplication oper-

ation is defined as k · P = P+
k· · · +P , for any P ∈ E(K)

and k a natural number. Such an operation, analogous to the
exponentiation in multiplicative abelian groups, is important
for the elliptic curve cryptography. There exist several algo-
rithms to perform such an operation (see [6]), although the
most extended is the binary method, also called double-and-
add algorithm (an analogue of the square-and-multiply algo-
rithm in multiplicative abelian groups). This method exploits the
binary expression of k, and reduces an exponentiation to a
chain of log2(k) doublings and additions of points. For instance,
13 · P =

`
22(2 + 1) + 1

´
· P = 2 (2 (2 · P + P )) + P . From

the point of view of computational complexity, the addition of
two different points involves the computation of one inverse
and 3 multiplications in the field, while doubling requires one
inversion and 4 multiplications.

�
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Figure 1. Point addition on elliptic curves over R.

2.2 Elliptic curves over finite fields
From a cryptographic perspective, elliptic curves over finite
fields Fq, with q = pm and p prime, are interesting because they
provide instances of finite groups where the discrete logarithm
problem is hard. In practice, the most common fields are Fp or
F2m , where p and m are large enough to grant the desired level
of security.

One should stress that the interest on these curves is con-
nected to their number of points. The knowledge of the proper-
ties of such a cardinal, as well as the group structure, is crucial
in the design of cryptographic applications, and it becomes an
important requirement to be taken into account for the develop-
ment of new schemes and techniques.
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Let #E(Fq) denote the cardinal of the group of points. It
is a well known fact that #E(Fq) can be written as #E(Fq) =

q + 1 − t, with t the trace of the Frobenius endomorphism
ϕ : E(Fq) → E(Fq), which assigns to each point (x, y) the
point (xq, yq). Hasse provided [36] a threshold for the value of
the trace, and hence for the cardinal of the curve.

Theorem 1 (Hasse) The trace of the Frobenius endomor-
phism of a curve E/Fq satisfies |t| ≤ 2

√
q. Consequently, the

cardinal of E(Fq) belongs to the interval [q + 1− 2
√

q, q + 1 +

2
√

q].

As an example, we can consider the curve E : y2 =

x3 + 1013x + 2007 over the field Fp with p = 314159265359,
which has cardinal

#E(Fp) = 31415893030968 = 23 · 3 · 13089955457.

To obtain points P = (x, y) on the curve, one can take ran-
dom values x in Fp, checking whether the Legendre sym-
bol of x3 + 1013x + 2007 over p is 1. Hence, there ex-
ist two roots y, which correspond to the ordinates of two
points with abscissa x, opposite one another. For instance,
the points P = (63510465893, 141411081955) and −P =

(63510465893, 172748183404) lie on the curve above and their
order is 13089955457, since 13089955457 · P = O.

The following result after J. W. Cassels [8], and completed
by Schoof [72], describes the structure of the group of points of
an elliptic curve over a finite field.

Theorem 2 (Cassels) The group E(Fq) is isomorphic either
to the cyclic group Zm, where m = #E(Fq), or to the group
Zm1 × Zm2 , where m1 ·m2 = m, m2|m1 and m2|(q − 1).

Moreover, as J. E. Cremona pointed out in a remark in the
Number Theory distribution list [12], the value of m2 is com-
pletely determined by the value of m1, unless q is one of the
integers

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 43, 61, 73, 181, 331,

547, 4, 9, 27, 81, 25, 49, 121, 841.

Hence, in the other cases the cardinal and structure of the group
of points is completely determined by a point of order m1.

On the other hand, E. Waterhouse [47, 78] showed that
for any finite field Fp, there exist elliptic curves with cardinal
equal to any of the integers in the Hasse interval, and one finds
elliptic curves with every possible group structure [69, 77]. This
is one of the main advantages provided by elliptic curves: for
a given finite field Fp there is a wide range of cryptographically
interesting cardinals, which go through a large interval of length
4
√

p.

2.3 Elliptic curves over rings
Elliptic curves defined over rings Zn, with n = p · q the product
of two primes p, q, are also useful in the design of cryptosystems
based on the intractability of the integer factorization problem.
In fact, the chord and tangent addition law can be extended for
points in a curve E over Zn. However, since there are elements

in Zn which are not invertible, the addition law is not always
well-defined when using analytical expressions like (2).

One way to overcome this is to consider elliptic curves de-
fined on the projective plane P2(Zn). In this way, the points in
the curve are given as triples [x, y, z] satisfying the equation
y2z = x3 + axz2 + bz3 in Zn. Note that besides point at infinity
[0, 1, 0] and the points [x, y, 1] in the affine plane, our curve
also contains semi-infinite points [x, y, z] such that gcd(z, n) is
either p or q.

By the Chinese Remainder Theorem, it follows that the map-
ping E(Zn) → E(Fp) × E(Fq), defined by the natural pro-
jections is a bijection, and this endows E(Zn) with a group
structure compatible with the elliptic addition defined by the
chord-tangent method. Moreover, considering mp = #E(Fp)

and mq = #E(Fq) it follows that

(1 + k ·mp ·mq) · P = P, ∀P ∈ E(Zn), ∀k ∈ Z.

Similarly, the set of points E(Zn2) is given a group structure
which takes care of the existence of more points at infinity,
namely all those with coordinates Ok = [k · n, 1, 0], 0 ≤ k < n.

3 Elliptic curve cryptosystems

Koblitz [38] and Miller [51] suggested in 1985 to use ellip-
tic curves over finite fields for the design of cryptosystems
[6, 33, 47]. Since then, several schemes have been proposed,
and at the moment some of them are present in industrial stan-
dards (for instance [60]), and some receive the same attention
as the most widely used cryptosystems.

The security of most of these schemes relies on the in-
tractability of the discrete logarithm problem in the group of
points of an elliptic curve. There also exist proposals concerning
curves over the rings Zn or Zn2 , n = p · q, which base their
security on the complexity of the factorization problem. Some of
these schemes extend the capabilities of RSA [67], and provide
efficient mechanisms for semantically secure cryptography [32].

3.1 ElGamal-type cryptosystems
The cryptosystem introduced by ElGamal [19] in 1985 bases its
security on the intractability of the discrete logarithm problem
(DLP):

Given a cyclic finite group G, a generator g and an
element g′ in G, find an integer n such that g′ = gn,
that is, find the discrete logarithm of g′ in base g.

Note that, given g and n, it is straightforward to compute
g′ = gn. But, the other way round, given g and g′, it is generally
difficult to compute n. In the particular case that G is the group
of points of an elliptic curve over a finite field, it is customary to
give this problem the name ECDLP. Elliptic curves are usually
taken over finite fields Fq, with q = p or q = 2m.

If one considers ElGamal cryptosystem over the multiplica-
tive group F∗p (as in [19]), p should be large enough to grant
security. In practice, p is taken such that p − 1 has a large
prime factor. Otherwise, an attacker could take advantage of
the Pohlig-Hellman method [63], which reduces the attack to
the DLP over groups whose orders are factors of p− 1.
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The complexity of the general purpose algorithms which
try to solve the DLP (baby step – giant step, Pollard-ρ, Pohlig-
Hellman,. . . ) is exponential. However, for the particular case
of DLP over F∗p, there exists a more efficient algorithm, known
as the Index-Calculus attack [74], which has a subexponential
cost.

Table 1. NIST guidelines for public key sizes

DLP& RSA ECDLP Ratio AES

(bits) (bits) key sizes (bits)

1024 163 1:6

3072 256 1:12 128

7680 384 1:20 192

15360 512 1:30 256

The advantage of the ElGamal cryptosystem over the group
of points of an elliptic curve lies in the fact that the best-known
algorithm to solve ECDLP has exponential cost, hence the size
of the group and the keys are allowed to be significantly smaller
while offering same security. Table 1 compares the key lengths
for a given security level between DLP, ECDLP and the key
lengths of the standard symmetric encryption scheme AES [13].

The setup of the cryptosystem consists in taking a prime p

which defines the field Fp, two parameters a and b correspond-
ing to an elliptic curve E over Fp, and a point P in E with order
n. The cyclic group to consider is the subgroup of Ea,b(Fp)

generated by P . With these elements fixed, the secret key is a
random integer d in [1, n− 1], while the public key is the point
Q = d · P in the curve.

The encryption and decryption algorithms work as follows
[35, 49]:

Algorithm (ElGamal elliptic curve cryptosystem encryption)
INPUT: The parameters (p, a, b, P, n), the public key

Q and the plaintext m.
OUTPUT: The cyphertext (α1, α2, γ).

• Select a random integer r in [1, n− 1].

• Compute the points r · P = (α1, α2) and
r ·Q = (β1, β2) on Ea,b(Fp).

• Compute γ = m · β1 in Fp.

• Return (α1, α2, γ).

Algorithm (ElGamal elliptic curve cryptosystem decryption)
INPUT: The parameters (p, a, b, P, n), the private key

d and the cyphertext (α1, α2, γ).
OUTPUT: The plaintext m.

• Compute the point d·(α1, α2) = d·r ·P = r ·Q = (β1, β2)

on Ea,b(Fp).

• Obtain the plaintext m = γ · β−1
1 in Fp.

• Return m.

There are still some challenges related to the setup of the
elliptic curve cryptosystem, such as computing the cardinal
of an elliptic curve, the design of efficient algorithms to obtain
cryptographically good elliptic curves (neither non-supersingular
nor anomalous) with almost prime cardinal, or finding points
whose order is as large as possible. Any improvement in these
directions would result in a more efficient setup of the system.

3.2 RSA-type cryptosystems
Koyama, Maurer, Okamoto and Vanstone [41] proposed the so
called KMOV cryptosystem using elliptic curves defined over
Zn, n = p · q, with p, q two secret primes. The security of the
KMOV cryptosystem relies on the hardness of finding the prime
factors of n.

The setup of this cryptosystem simply requires two primes
p, q such that p, q ≡ 2 (mod n). The chosen elliptic curves are
defined by an equation y2 = x3 + b over Zn. These curves have
p + 1 points over Fp and q + 1 points over Fq. The public key is
the pair (n, e), where e is an integer coprime to (p + 1)(q + 1).
The private key is the integer d := e−1 modulo (p + 1)(q + 1).
Encryption and decryption work as follows:

Algorithm (KMOV Encryption)

INPUT: The Public Key (n, e) and the plaintext mes-
sage m.

OUTPUT: The cyphertext (c1, c2).

• Represent the message m as a point
M = (m1, m2) ∈ Zn × Zn.

• Take the curve E : y2 = x3 + b with
b = m2

2 −m3
1 (mod n).

• Compute the point e ·M = (c1, c2) on E(Zn).

• Return (c1, c2).

Algorithm (KMOV Decryption)

INPUT: The private key (p, q, d) and the cyphertext
(c1, c2).

OUTPUT: The plaintext (m1, m2).

• Take the curve E : y2 = x3+b with b = c2
2−c3

1 (mod n).

• Compute the point d · (c1, c2) = d · (e · M) =

(1 + k(p + 1)(q + 1)) ·M = (m1, m2) on E(Zn).

• Return (m1, m2).

Breaking the cryptosystem above is computationally equiva-
lent to breaking RSA. However, the encryption step in KMOV is
clearly slower than in RSA.

Because of this, some proposals like Demytko’s [15] have
appeared. In [15] some of the limitations of KMOV are over-
come. For example the curve in the scheme setup is fixed,
and there is no restriction on the type of elliptic curves con-
sidered. In Demytko’s scheme the message is represented as
the abscissa of a point on the curve, and in the decryption
algorithm one previously needs to know which of the twists
of the curve over Fp and Fq is being used for the operations
— a twist of a curve E/Fp : y2 = x3 + ax + b is given by
E′/Fp : sy2 = x3 + ax + b where s is a non-quadratic-residue
in Fp, and satisfies #E′(Fp) = p + 1 + t if #E(Fp) = p + 1− t.
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Meyer and Müller [50] proposed another RSA-like cryptosys-
tem using elliptic curves over Zn. They use a 2-exponent encryp-
tion, and breaking it is provably as hard as factoring n. However,
Joye and Quisquater [37] prove that Meyer and Müller’s scheme
is reducible to the Rabin-Williams scheme [79], which relies on
the difficulty of extracting square roots modulo a composite
integer n.

More recently, Paillier [61] designed a cryptosystem over
the ring Zn2 , n = p · q, based on the problem of composite
residuosity:

Let n be an integer of the RSA-modulus type, let
g ∈ Z∗

n2 of order a multiple of n and let ω ∈ Z∗
n2 .

The problem is to find an integer m such that there
exists r ∈ Z∗

n with ω = rngm (note that under the
above assumptions the map εg : Z∗

n × Zn → Z∗
n2

which assigns to a pair (r, m) the integer rngm

(mod n2) is a bijection).

The elliptic curve version of Paillier’s scheme that we now de-
scribe was given by S. Galbraith in [23]. For the setup he con-
siders an integer n = p · q product of two primes p, q, and a
curve Ea,b over the ring Zn2 . The knowledge of the number of
points of Ea,b over Fp and Fq is a requirement for constructing
the private key d = lcm(#Ea,b(Fp), #Ea,b(Fq)). The public
key is a point Q of #Ea,b(Zn2) such that d · Q = [0, 1, 0] (for
instance, taking a random point Q′ and computing Q = n ·Q′).
The encryption and decryption algorithms work as follows:

Algorithm (Paillier-Galbraith Encryption)

INPUT: Parameters (n, a, b), the public key Q and the
plaintext m.

OUTPUT: The cyphertext C.

• Represent m as a point Pm = [m · n, 1, 0] of Ea,b(Zn2).

• Choose a random integer r ∈ Zn.

• Compute the point C = r ·Q + Pm on Ea,b(Zn2).

• Return C.

Algorithm (Paillier-Galbraith Decryption)

INPUT: Parameters (n, a, b), the private key d and the
cyphertext C.

OUTPUT: The plaintext m.

• Compute the point d · C = d · (r ·Q + Pm) = d · Pm =

[d ·m · n, 1, 0] on Ea,b(Zn2).

• Obtain the first coordinate x = d ·m · n of the point d · C.

• Compute y = x/n in Z and the product m = y · d−1 in
Zn.

• Return m.

Despite being efficient, the elliptic curve variant above is not
semantically secure [32]: given two plaintexts and the cypher-
text of one of them, an adversary may decide in polynomial time
which plaintext corresponds to the cyphertext with probability
significantly greater than 1

2
. In this direction, Galindo, Martín,

Morillo, Takagi and Villar [28, 29] designed a semantically secure
cryptosystem that generalizes Paillier-Galbraith’s scheme using
KMOV-type elliptic curves.

4 Digital signatures using elliptic curves

The electronic communications era in a broad sense, and spe-
cially e-commerce, motivate the need for some mechanism for
the sender to grant the claimed identity when a receiver obtains
his message (non-repudiation mechanisms).

Digital signatures (see [18, 22, 66]) emerge as an analogue
to manual signatures in ordinary mail. In order to grant the length
of the digital signature to be smaller than the message to sign,
hash functions are used. These functions build in a reproducible
way a fixed size fingerprint of the message and they are collision
resistant. The digital signature depends then on the hashed
message and the private key of the signer. As a result, any entity
may check the veracity of a signature from the public key of the
signer.

The Digital Signature Algorithm (DSA in short) is a variant of
the ElGamal signature, which is in its turn the basis of the Digital
Signature Standard (DSS). The Elliptic Curve Digital Signature
Algorithm (ECDSA) is the elliptic curve analogous to DSA. In
fact, this algorithm has been included as a component of the
set of cryptographic algorithms Suite B [59] promulgated by the
National Security Agency.

The signature generation and verification procedures [35]
are as follows (N.B. one uses the same setup parameters as in
ElGamal):

Algorithm (ECDSA digital signature generation)

INPUT: The parameters (p, a, b, P, n), the public key
Q, the private key d and the plaintext m.

OUTPUT: The message m with the signature (r, s).

• Compute the Hash h = H(m) of the message.

• Choose a random integer k in [1, n− 1].

• Compute the point k · P = (x, y) on Ea,b(Fp).

• Compute r = x mod n (restart if r = 0).

• Compute s = k−1(h + d · r) mod n (restart if s = 0).

• Return m and (r, s).

To verify the signature from the Hash of the message
one needs to compute the inverse w of s modulo n. Then
it is enough to use the public key to compute the point
R = (w · h) · P + (w · r) · Q and check that the abscissas
of the points R and k ·P coincide, because k = w ·h + w · d · r
and Q = d · P .

5 Cryptographically useful elliptic curves

Cryptosystems and digital signature schemes using elliptic
curves demand some requirements for the setup, notably the
order of the elliptic curves involved must satisfy certain good
conditions. Following the cryptographic standard recommen-
dations [60], it should be verified that the group order of E(Fp)

be of the form f · q, with q prime and f a small integer [39].
Otherwise the curve is vulnerable to the Pohlig-Hellman attack.

It is also convenient that the curve be neither non-
supersingular nor anomalous. Supersingular curves are those
with cardinal p + 1, and for them the MOV attack [48] transfers
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the ECDLP in E(Fp) to the DLP in F∗pk , with k ≤ 6. Anomalous
curves are those with cardinal p and, although they resist the
MOV attack, there exists a polynomial algorithm which solves
the DLP over their group of points.

Hence, it seems reasonable to compute first the cardinal of
the curves and check whether this number satisfies the required
conditions before using them in cryptographic protocols. Even
though the point-counting problem for elliptic curves over Fp is
solved by the well-known Schoof algorithm [71], with polynomial
complexity O(log8 p), its practical implementation turns out to
be unfeasible when p is large.

The basic idea of the Schoof algorithm is the computation
of the trace t of the Frobenius endomorphism of the curve
E/Fp modulo different suitably chosen small primes ` such thatQ

` > 4
√

p. The value of t is recovered with the Chinese Re-
mainder Theorem, and from t the cardinal #E(Fp) = p + 1− t

is obtained. The contributions given by Atkin and Elkies (see [6])
allow a factor of degree (`− 1)/2 of the `-division polynomial of
the curve to be found. This is used to improve the implementa-
tion of the initial algorithm of Schoof, and all together constitute
the so called SEA algorithm.

Later, Fouquet and Morain [20] extend the moduli ` in the
SEA algorithm to prime powers `s. They propose to compute
the values s from the graph of volcanoes of `-isogenies.

In another direction, the algorithm of Satoh [70] provides the
computation of the cardinal of elliptic curves over F2m for large
values of m (see the communications of Harley and Lercier [44]
in the Number Theory distribution list).

5.1 Algorithms to discriminate non-useful elliptic curves

Elliptic curves where DLP is easy to solve are not useful for
cryptographic applications. The DLP in elliptic curves with car-
dinal equal to a product of small primes is solvable using the
Pohlig-Hellman method. Therefore high powers of primes are
not desirable in cardinals of interesting curves.

In [53] a polynomial algorithm is given to determine the 2-Sy-
low subgroup of an elliptic curve E over a finite field Fp. For
small primes ` 6= 2, this procedure can be generalized to obtain
the `-Sylow subgroups of E(Fp) [57]. The summary of the steps
is as follows.

• Compute the rational points of order ` of the curve from
the `-division polynomial.

• Assuming the existence of a point P of order `n such that
` ·Q = P , find, whenever it exists, a point Q of order `n+1.
For short, one says that Q is an `-divisor point of P .

An iteration of the process above allows a point to be ob-
tained whose order is the maximal `-power. At each step, a
suitable `-divisor point is obtained with the roots of two degree `

polynomials with coefficients in the ground field. To obtain these
coefficients, a generalization of Vélu’s formulae for isogenies
between elliptic curves is introduced [52].

The output of the algorithm is a pair of integers (n, r),
0 ≤ r ≤ n, where n is the largest integer such that points
of order `n exist and r is the integer such that the `-Sylow
subgroup is isomorphic to Z`n × Z`r .

Using these techniques, powers of an small ` of the car-
dinal of an elliptic curve over fields Fp can be computed in
a very efficient way. For instance, the curve with equation
y2 + axy + by = x3 over Fp, p = 1060 + 3201, with coeffi-
cients

a =5912515649302256304431420519528930166

14929347898787063526161

b =588863440918737889900112853721548168

31859102298452952190984

has 2-Sylow and 3-Sylow groups isomorphic to Z2 × Z2 and
Z311 × Z3, respectively (these computations can be performed
in less than a second using MAGMA [45]).

5.2 Elliptic curve generation by means of volcanoes of
isogenies

Given an elliptic curve E over Fp, all elliptic curves isomorphic
to E have the same cardinal and group structure as E(Fp).
However, different elliptic curves with the same cardinal are not
necessarily isomorphic. As a matter of fact, all curves isogenous
to E (see [16, 73]) have this property. So it is interesting to gen-
erate elliptic curves that are isogenous to a cryptographically
useful elliptic curve. The goal is to provide as many good curves
as possible without changing the arithmetic of the base field Fp.

The set of all elliptic curves up to isomorphism with a given
cardinal forms a complete directed graph. The vertices of this
graph are isomorphism classes of elliptic curves, and the arcs
are isogenies between them. The restriction to isogenies of cer-
tain prime degrees ` forms a subgraph which is not necessarily
connex. Each connex component is stratified into different levels,
forming a so-called volcano structure [40] because of its special
shape. More precisely, a volcano consists of a cycle or crater,
from each of whose vertices hangs an (`− 1)-complete tree. All
these trees are isomorphic. Kohel explored such a structure to
determine the endomorphism ring of a given elliptic curve with
known cardinal. An `-volcano for ` = 3 is shown in Figure 2.

Figure 2. Volcano of 3-isogenies.

On the other hand, Fouquet-Morain [20] provide an algo-
rithm to determine the height of a volcano. Their method con-
sists of an exhaustive search over several paths on the volcano
to detect the crater and the floor levels. In each step, they com-
pute the roots of the `-modular polynomial in order to obtain
the j-invariant of the isogenous curves. In [56] the relationship
between the levels of the volcano and the `-Sylow subgroup
structure of the curves is described. Using this relationship and
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Vélu’s formulae [75] (which allow explicit equations for isogenies
to be obtained) it is possible to design an algorithm to compute,
for a given elliptic curve E, the height and the length of the
crater of its `-volcanoes for ` = 2, 3, and also to determine the
list of curves isogenous to E (see [54, 56]). For instance, the vol-
cano of 2-isogenies of the elliptic curve with Legendre equation
y2 = x(x−1)(x−λ) with λ = 4 over Fp, p = 10100 +1357 has
height 2 (and 3 levels) and the length of crater is 2. The whole
volcano has 14 vertices, and among the 14 curves isogenous
to E one finds for example the curve with parameter

λ =337520270738387966719808441910759004042

51769472591172399482649510612701113543944

61131215697274948282

Experimental results point out that the average height
of these volcanoes is very small, while the length of their
craters can be huge. For example the volcano of the curve
y2 = x(x − 1)(x − 2017156814720162) over the field Fp with
p = 8010956020551503 has a height of 1 and crater length of
74638817.

The algorithm can also be implemented for other small
primes `. In the same fashion, if one considers different val-
ues of ` for the same curve E, it is possible to cover all the
connex components of whole `-range of volcanoes (see [55]),
and this increases the desired number of curves isogenous
to E. This algorithm provides many more curves isogenous to a
cryptographically suitable elliptic curve, hence their interest from
a practical point of view follows. Furthermore, this procedure
can be significantly improved by using paralellization techniques,
as shown in [46].

Besides, it should also be mentioned that, although the
cardinal is an invariant under isogeny, there might be other
properties (such as group structure or magic number [25], for
instance) that are not. Depending on these parameters, curves
could be weaker. In particular, the Weil descent attack to the
ECDLP exploits such a fact, embedding the group E(K) in the
divisor class group of hyperelliptic curves defined over a proper
subfield of K given by the Weil restriction [21, 30]. Galbraith,
Hess and Smart [24] suggest a procedure to find an isogenous
curve where the Weil descent attack is effective, by means of a
random walk over the volcanoes of isogenies.

6 Privacy and security in computationally
restricted systems

During recent years, industry has been paying a lot of attention
to the development of smart cards and RFID (Radio Frequency
Identification) technologies, for use in many e-commerce and
financial applications [64, 62]. In both cases, the computational
capabilities of these devices are limited, so security mechanisms
fitting such restrictions are needed.

Smart cards include an embedded microchip which can
process some information, deal with some limited memory ca-
pacity, as well as execute some computational processes that
are not too complex or costly. These cards are often used in
identification mechanisms, implementing some cryptographic

algorithms. Among the huge amount of applications, their use
as credit cards, SIMs for mobile phones, access control cards,
and authorization cards in pay-per-view systems should be
mentioned.

On the other hand, an RFID mechanism is a last generation
technology which provides an automatic method for identifying
objects at distance, by using radio communications. RFID tags
are attached to each object. These tags consists of a microchip
and an antenna, which permit communication by means of a
wireless channel. However, in the case of passive tags, they
require no internal power source. There is also a wide range of
applications of these systems, going from object control in pro-
duction chains, product labelling in department stores (allowing
automatic stock control as well as instantaneous computation
of the shopping cart cost), inclusion in electronic passports,
and there are even some proposals suggesting their use in ban-
knotes, such as controlling false banknotes or tracking them in
illegal transactions.

In both scenarios, secure protocols are required to guaran-
tee the correct behavior of the systems [65, 14]. Hence, the
cryptographic algorithms need to fit the features of these envi-
ronments, such as computational restrictions, reduced memory
capacity and bandwidth. Elliptic curve cryptography turns out
to be a good alternative to conventional cryptography, since
the usage of smaller fields can provide cryptographic solutions
which fit better these restrictions [3, 42, 80].

6.1 ECC on Smart Cards

Features of elliptic curve cryptography make them suitable for
implementation on memory constraint devices such as smart
cards. Nevertheless, the implementation must be done carefully,
on the one hand to decrease the cost of the operations and on
the other hand to avoid possible attacks.

Concerning the operation k · P over an elliptic curve, re-
member that it can be reduced to doubling and adding points,
by using the binary method. These addition formulae (see (2))
need one inversion over the base field Fq, which is more ex-
pensive than multiplication. So, for implementations on smart
cards, it is usual to transform affine coordinates (x, y) into other
coordinates where inversion is not required, as projective coor-
dinates or Jacobian coordinates. In Jacobian coordinates, the
elliptic curve is given by an equation y2 = x3 + axz4 + bz6,
while points with coordinates [x, y, z] and [r2x, r3y, rz], r ∈ F∗q ,
correspond to the same point. Then the coordinates of P +Q =

[x3, y3, z3] in terms of the coordinates of P = [x1, y1, z1] and
Q = [x2, y2, z2] are given as follows:

• If P = Q, take S = 4x1y
2
1 , M = 3x2

1 + az4
1 and

T = −2S + M2. Then
x3 = T, y3 = −8y4

1 + M(S − T ), z3 = 2y1z1.

• If P 6= Q, consider U1 = x1z
2
2 , U2 = x2z

2
1 , S1 = y1z

3
2 ,

S2 = y2z
3
1 , H = U2 − U1 and R = S2 − S1. Then

x3 = −H3 − 2U1H
2 + R2,

y3 = −S1H
3 + R(U1H

2 − x3),

z3 = z1z2H.
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Indeed, computation of inverses is avoided so that fast imple-
mentation on hardware devices can be optimized.

The Side Channel Attacks (SCA) on ECC over smart
cards [7] are based on obtaining information from the be-
havior of the power consumption of these devices. Analyz-
ing such patterns, the differences between the doubling and
adding operation can be detected. Hence, an attacker observ-
ing the performance of a card computing d · P using the binary
method, can easily manage to get the bits of the secret key,
d = (dn−1 . . . d1d0)2. There are several approaches to avoid
this simple power analysis attack, such as the Montgomery-type
method, which forces the computation of both the doubling and
the adding for each di. Nevertheless, the so called differential
power analysis, can still be resistant to these methods by an-
alyzing many power consumptions with statistical tools. There
are also several countermeasures to prevent this attack, which
are based on randomization methods, such as randomization
of Jacobian coordinates.

A new attack [34], when the curve have points (x, 0) or
(0, y), is the Goubin’s power analysis attack. In this case, these
points cannot be randomized in Jacobian coordinates either.
Besides, this attack has been extended to the points corre-
sponding to the zero values ZVP [1] of 3x2 + a = 0, x2 − a = 0

and x2 + a = 0, which appear in the auxiliary expressions of
the adding formulae, including the Montgomery one. A counter-
measure proposed to avoid this attack is the usage of isogenies.
Indeed, an isogenous curve which has neither (0, y) nor ZVP
can be considered. Hence the computations can be made on
this curve but then, using the isogeny equations, the resulting
point will be given in the original curve.

7 Recent developments

In this section we sketch some recent research on the coopera-
tive relationship between cryptography and algebraic curves.

There are some computationally interesting problems re-
lated to DLP. The Decisional Diffie-Hellman Problem DDHP, for
instance, is being able to distinguish between the distributions
(P, a · P, b · P, ab · P ) and (P, a · P, b · P, c · P ) where a, b, c are
random in Zp and P is an element of a suitable cyclic group of
large prime order, typically a point of an elliptic curve.

Another problem closely related to DLP is the Computational
Diffie-Hellman Problem CDHP, which consists of the actual com-
putation of the element ab · P from P, a · P and b · P . Note
that an algorithm to solve DLP solves both DDHP and CDHP,
so these matters only make sense in case DLP has no known
efficient solution.

The rich theory of algebraic curves happens to provide use-
ful tools to deal with such problems and define new challenges.
For instance, in the case of elliptic curves there exists a bilinear,
non-degenerate pairing

e`(·, ·) : E(Fp)[`]× E(Fp)[`] → F∗pk

where ` is prime to p and k is the smallest number such that
` | pk − 1. For every pair P, Q of points in E, e`(P, Q) is an effi-
ciently computable value of certain finite field. For some values of

k, DDH becomes solvable in E(Fp) using non-degeneracy and
bilinearity of e`(·, ·). On the other hand, the existence of a pair-
ing like e`(·, ·) is useful to define the perhaps most common of
all security assumptions today. This is the Bilinear Diffie-Hellman
Assumption, namely that the computation of e`(P, P )abc from
P, a · P, b · P, c · P is hard.

One way to solve DDH in practice using pairings is by the
means of distortion maps [76]. Roughly, these are group homo-
morphisms that enable the non-degeneracy property of e`(·, ·)
for all the pairs of elements in the group. Their existence is re-
lated to the shape of the endomorphism ring of the underlying
elliptic curve, or the higher dimension abelian variety if this is the
case [27, 26].

The Identity-Based Encryption Scheme by Boneh and
Franklin [5] is a good example of how to exploit this extra struc-
ture. Their scheme is the first fully functional encryption scheme
that avoids the need to obtain public key certificates to send
messages, as the authentication step is transfered to become a
matter between the receiver and a Certification Authority. We
briefly sketch now how it works.

Protocol (Identity-Based Encryption Scheme)

• Step 1. The Certification Authority makes public the pa-
rameters of the scheme: two groups G1, G2, a pairing
e(·, ·) : G1 × G1 → G2, a generator P of G1 and
Ppub = s · P for a secret master key s ∈ [1, q − 1].

• Step 2. For a string id of bits typically associated to the
email address of the receiver, CA associates Qid ∈ G1

and sets the private key of the receiver did = s ·Qid.

• Step 3. A sender encrypts a message M for the public
key id computing Qid and gr

id = e(Qid, Ppub)
r ∈ G2, for

a random r ∈ [1, q − 1], and then transmitting the pair
C = (r · P, M ⊕ gr

id).

• Step 4. The receiver is able to decrypt C = (U, V ) us-
ing his secret key did to compute V ⊕ e(did, U) = M

because

e(did, U) = e(s ·Qid, r · P ) = e(Qid, P )sr

= e(Qid, Ppub)
r = gr

id.

8 Further cryptographic applications

Elliptic curves also play a remarkable role in other subjects di-
rectly related to cryptography and cryptanalysis, for example
primality tests or factorization algorithms [10]. Primality tests are
a fundamental tool in the setup of public key cryptosystems like
RSA and ElGamal. Although probabilistic tests are often used
to detect potentially composite numbers, it is convenient to use
deterministic tests to grant and certify the primality of a given
number. For instance, in ElGamal schemes the prime p deter-
mines the base field and consequently the modular arithmetic
to be used. One of the best known primality tests based on
elliptic curves is the Goldwasser-Kilian test [31]. Their method
is the elliptic curve version of a result by Pocklington-Lehmer
for Z∗

N , but they work with the group E(ZN ) instead (here N

is the integer to certify). While the group Z∗
N is of no use when
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N − 1 does not verify certain properties, the group E(ZN ) has
the advantage that the equation of the elliptic curve can be
modified until a cardinal with the required conditions is found.
The main drawback for using elliptic curves is the computa-
tional cost of the group order and its factorization, as well as
the determination of a point of large enough order. To avoid
all these computations, Atkin and Morain [2] propose a primal-
ity test which relies on the construction of elliptic curves with
prefixed cardinal and j-invariant using the theory of complex
multiplication. The implementation of their test is very efficient,
and they are able to prove primality for numbers of 100 digits.

Concerning the integer factorization problem, the proper-
ties of elliptic curves are also exploited in the design of new
algorithms. Lenstra’s algorithm [43] for instance is inspired in
Pollard’s p− 1 method (which tries to find a factor p of an inte-
ger N that is the product of p− 1 small primes), but as in the
case of primality tests, uses the groups E(ZN ) instead of Z∗

N .
The point manipulation in Lenstra’s algorithm is via projective
coordinates, and with the multiples k · P = [x, y, z] of a point
P of E(ZN ) it is possible to find a factor p of N from gcd(z, N)

when varying P and E/ZN .
Modern factorization algorithms like Lenstra’s or the Num-

ber Field Sieve were successful breaking large RSA moduli.
To encourage the research on these topics, as well as to test
their performance, RSA Laboratories have been posting several
challenges [68] consisting of a set of integers to be factored.
Hence, since 1991 several challenges have been broken, rang-
ing from 100 to 200 digit-length integers. The last one was
the so-called RSA-200 Challenge, which was factored in 2005.
There are still lots of challenges to defeat, the largest one being
around 600 digit-length. Similarly, Certicom also issued some
challenges [9] to solve the ECDLP in a cyclic subgroup of an
elliptic curve. They are named ECCp-d and ECC2-d to dis-
tinguish whether the base field is Fp or F2m , and where d is
the bit-length of the order of the cyclic subgroup. Moreover,
when using Koblitz curves over F2m , the challenges are called
ECC2K-d. To date, the most recently solved challenges are:
ECC2K-108 was solved using a distributed version of Pollard’s
ρ in year 2000, ECCp-109 fell in 2002 and ECC2-109 fell in year
2004, with help of 2600 computers working 17 months. The
next unbroken one is ECCp-131, with an estimated workload
of around 2.310 machine days. This challenge is defined by the
following parameters (in hexadecimal notation):

p = 04 8E1D43F2 93469E33 194C4318 6B3ABC0B

a = 04 1CB121CE 2B31F608 A76FC8F2 3D73CB66

b = 02 F74F717E 8DEC9099 1E5EA9B2 FF03DA58

n = 04 8E1D43F2 93469E31 7F7ED728 F6B8E6F1

xP = 03 DF84A96B 5688EF57 4FA91A32 E197198A

yP = 01 47211619 17A44FB7 B4626F36 F0942E71

xQ = 03 AA6F004F C62E2DA1 ED0BFB62 C3FFB568

yQ = 00 9C21C284 BA8A445B B2701BF5 5E3A67ED

where n is the order of the point P = (xP , yP ) on the curve
y2 = x3 + ax + b over Fp. The goal is to compute k such that
k · P = (xQ, yQ).

Interestingly enough, all these advances in cryptanalytic
techniques and results foster research in the opposite direction,
that of the design of even more resistant and secure crypto-
graphic protocols: proposals of new methods, exploration of
the suitability of other groups, such as the Jacobian of a hyper-
elliptic curve or other abelian varieties [4, 11], the definition of
new computationally hard mathematical problems,. . .
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